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One of the main problems in welding is to produce consistent weld profiles. Simple 
heat-flow models of the weldpool, which are currently used to predict the shape of the 
solid-liquid boundary, do not take account of fluid motion which is observed in 
practice and the effect of such motion could be significant. Electromagnetic j x B 
forces due to the welding arc have been proposed as a major cause of the motion and 
we attempt here to develop existing flow models towards more practical welding 
situations. We consider the steady-state flow of an incompressible viscous conducting 
fluid in a hemispherical container due to various axisymmetric representations of the 
distributed current sources which can arise in arc welding. A solution is found for 
sufficiently small currents that inertial effects may be ignored and no singularities 
appear in the velocity field. We discover that varying the current distribution can 
lead to qualitatively different flow patterns, i.e. poloidal flows in opposite directions 
and breakup into two distinct counter-rotating loops. 

1. Introduction 
In  recent years there has been considerable interest in understanding the physical 

mechanisms underlying welding processes. Fusion welding has received the most 
attention, both experimentally and theoretically. Heat-conduction models of the 
weldpool in fusion welding have been extensively investigated (Carslaw & Jaeger 
1959; Rosenthal 1941; Christensen, Davies & Gjermundsen 1965) but recent experi- 
ments (Woods & Milner 1971; Kublanov & Erokhin 1974) have cast doubt on these 
models by demonstrating the presence of vigorous motion of the molten metal, which 
may substantially affect the shape of the solid-liquid boundary. These experiments 
have suggested that the electromagnetic j x B force due to the welding arc is the pri- 
mary cause of the motion, where j is the current density and B is the magnetic 
induction. 

Some theoretical attention has been given to this topic in the last few years, 
originating from the work of Shercliff (1970) on the flow of a semi-infinite inviscid 
conductor due to a stationary point source of current situated on the plane boundary. 
His solution contains singularities in the velocity field on the axis of symmetry. Sozou 
(1971) removed these singularities by adding viscosity to the model but when the 
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dimensionless parameter K = ,uo p12/2n2q2 exceeds 300.1 singularities in the velocity 
field again develop along the axis. In  this expression I ,  ,uo, p and q are the total current 
of the discharge and the permeability, density and dynamic viscosity of the material, 
respectively, in mks units. 

There have since been several extensions of the point-source model. Narain & 
Uberoi (1971, 1973) have modified the Shercliff and Sozou solutions to describe flow 
in a conical region. Sozou & English (1972) have included the effect of the back e.m.f. 
and Sozou (1974) has considered flow confined to a cone and a central column, both 
papers applying to a semi-infinite fluid region. The transient build-up to the steady- 
state problem in Sozou (1971) has been solved by Sozou & Pickering (1975) and the 
same authors have recently (1976) found the steady-state solution in a finite hemi- 
sphere. In  all these extensions there remains a critical value Kcrit of K above which 
the velocity field breaks down on the axis. Kcrit varies to some extent from problem 
to problem, for instance Kcrit = 94.1 for a finite hemisphere with a free surface (Sozou 
& Pickering 1976). Taking typically quoted values for steel (Smithells 1967) of 
p,, = 4n x lO-’,p = 8 x 103andq = we find that Kcrit= 94.1 leads to a maximum 
current of about *A, which is very low compared with the normal welding currents of 
several hundred amps. In  all the papers mentioned above, the limiting currents which 
are allowed remain too low for practical welding conditions. 

In  practice, the current entering the material is distributed over a finite region and 
the singularity in the electromagnetic force j x B, inherent in the point-source model, 
does not exist. It therefore seems possible that the singularities in the velocity field 
could be removed by considering a distributed source of current on the surface. It 
appears that the only published work on flow due to a distributed source is by Sozou 
(1972), who considered the far-field solution in a semi-infinite fluid, i.e. the region 
T 9 a, where a is the radius of his disk source of current. Experimental observation 
suggests, however, that in welding the area over which the current enters the surface 
is a significant proportion of the total area of the pool. 

In this paper, therefore, we shall consider the steady-state flow of an incompressible 
fluid in a finite region due to a stationary distributed source and solve for the flow in 
the entire pool. For convenience, following Sozou & Pickering (1976), we restrict 
attention to a hemispherical pool of radius r,, and employ spherical polar co-ordinates 
( r ,  8,$). The basic fluid equation to be solved is the steady-state momentum equation 

p(v.V)v = -Vp+jxB-qVxw,  (1) 

where v is the velocity of the fluid, p is the static pressure and w = V x v is the 
vorticity. 

The first step in solving the above equation is to establish suitable self-consistent 
current distributions satisfying Maxwell’s equations; these are obtained in $ 2. Using 
these current distributions, in $ 3  we look for solutions to the linearized problem, 
where the inertial term on the left-hand side of (1) is neglected. We then show in 5 5 
that this neglect is always reasonable near the origin and for practical current distri- 
butions is also valid in the body of the fluid for currents up to 15A. Results for various 
current distributions are presented in $ 4 and we discover that qualitatively different 
flow patterns can arise. The implications of these results are discussed in $5. 
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2. Current distributions 
Ignoring the effect of the fluid motion on the current, the current density j will be 

(2) 
given by Ohm's law 

j = -aVV,  

where a is the electrical conductivity and V is the electrostatic potential, which 
satisfies Laplace's equation V2V = 0. The magnetic induction B is obtained from 

(3) 
Maxwell's equation 

where po is the permeability. 
One method of obtaining solutions to Laplace's equation is to construct potential 

distributions due to combinations of sources and sinks, and since this proves to be 
very convenient in representing the peaked current distributions on the surface of the 
pool due to a welding arc and in representing the current take-off points within the 
material, we shall adopt this approach here. Since the electrical conductivities of the 
arc, solid and liquid metal are significantly different, the model will not g' lve an 
adequate physical description of the current distribution above the surface as the 
siting of the 'source' will not coincide with the source of current from the electrode. 
However, we emphasize that the use of sources and sinks does produce suitable 
representations of the current flow in the region of interest, which is inside the 
weldpool. 

The simplest possible representation is that of a point source of current situated 
on the surface of a semi-infinite conducting material. This is the situation considered 
by a number of authors, including Shercliff (1970) and Sozou (1971), but in this model 
V ,  j, B and j x B are all singular at r = 0. 

In  the practical welding situation the current density on the surface of the pool is 
everywhere finite and, furthermore, the current is tapped off from points situated a 
finite distance from the pool. Woods & Milner (1971) have shown experimentally that 
the positioning of the points where the current is tapped off significantly affects the 
direction of fluid flow in the pool. It is common welding practice to tap the current 
from points situated off the axis of symmetry, but for the present we restrict attention 
to axisymmetric distributions. A fairly simple model with the required physical 
features is that of a point source placed a distance a above the surface together with 
a ring sink of equal strength situated beIow the surface and centred on the axis of 
symmetry. The angle subtended by the ring is taken to be 2a and the radius of the 
ring to be b sin a. We note that when a = 0 the ring sink becomes a point sink (on the 
axis of symmetry a t  a distance b below the surface) -an important special case of the 
general results. 

Expressions in closed form for the potential due to a ring sink are not available 
but infinite series representations are well known (see, for example, Jeans 1925). 
Since the ring lies outside the molten pool we have r < b for all points inside the pool 
and in this case the potential due to the ring sink is given by 

v x €3 = POL 

m 

V = - (1/47rab) Pn (COB a) (r/b)"P,(,u), (4) 
n=O 

wherep = cos 8 and P, is the Legendre polynomial of degree n. The potential due to the 
point source above the surface is V = (1/47ra) (a2 + r2 + Zarp)-t. In  this paper we shaIl 
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consider only those representations in which ro < a, where ro denotes the radius of 
the pool, in which case we may express V for the point source as an infinite series of 
the form (4) with Pn(cosa) replaced by ( - b/a)n+l. The combined potential due to the 
point source and ring sink may then be written as 

m 

n=O 
V = -(I/4mro) dnRnPn(,u), 

where R and d, are defined by 

R = r/ro, d, = (r, /b)n+l Pn(cos a) + ( - rO/a)n+l, (6% b )  

respectively. Substituting for V from (5) into (2) and (3) yields 

(7) 
(0 I "  

j = -2 47Wo ( d, nRn-l Pn(p), - (1  - ,a2)& n = l  dn Rn-l PA@), 0 
n = l  

and 
m 

B = (1 - p2)& (0, 0,  dnRnPA(p)/(n + 1)),  
4nr, n = l  

3. Fluid flow problem 
3.1. Basic equations 

We now consider the fluid flow problem in a finite hemisphere; there are natural 
similarities between our method and that of Sozou & Pickering (1976). We find it 
convenient to employ a non-dimensional stream function Y = 4p$/Kyr0 and the 
corresponding velocity v is 

v = - (yK/4pro) {R-2aYIap, R-l( 1 -p2)-4aY/aR, o}. (9) 

Y = a2Y/ap2 = 0 on p = 0, (10) 

Y =  aY/aR = o on R = 1, (11) 

Y = 0, aY/ap, (1 -p2)-4t7Y/aR both finite o n p  = 1, (12) 

R-2aY/ap, R-laY/aR both finite as R -f 0. (13) 

The complete set of boundary conditions to be satisfied is 

Equation (10) implies that the free surface of the pool is both flat and coincident 
with a streamline and that the shear stress is zero on this surface. Equation (11)  
represents the no-slip conditions on the liquid-solid interface. The requirements that 
the axis of symmetry be a streamline and that the velocity be finite both on the axis 
and at the origin are embodied in conditions (12) and (13). 

The complete fluid flow problem requires the solution of (1)  but after taking the 
curl to remove the conservative terms the resulting equation remains nonlinear owing 
to inertial effects and only numerical solutions seem feasible. In  order to obtain some 
insight into the difference in character between the point-source solution (Sozou & 
Pickering 1976) and that for various distributed sources, it  is instructive to obtain 
analytic solutions and we therefore restrict attention to the linear problem obtained 
when inertial effects are ignored. 
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3 .2 .  Linearized solution 

By taking the curl of ( l ) ,  neglecting the inertia terms and using (7)-(9) it may be 
shown that the linearized equation is of the form 

m 

In deriving the right-hand side of ( 1 4 )  it  proves convenient to use the result 

curl (j x B) = 42Bg{ j ,  +j,p( 1 -p2) - i } / r  ( 1 6 )  

(Shercliff 1970). In  terms of cylindrical polar co-ordinates (p, 8, q5) the right-hand side 
of (16) can be written as $2Bg jJp ,  and this simpler form is useful in discussing the 
flow patterns which occur in the weldpool (see $5) .  The functions &(p), which arise 
from the appearance of Legendre polynomials in ( 7 )  and (8), are polynomials of degree 
s+ 1 (for further details concerning the results in this section the interested reader 
should consult Andrews & Craine 1977).  

In  general the polynomials Fs(p) contain both odd and even terms. However, since 
our interests are restricted to the half-range 0 6 p 6 1 ,  we may express &(p) in this 
region as an odd series by defining a suitable extension of the function in the range 
- 1 < p < 0. It proves appropriate to write 

.. - 

from which it follows that 

Since a particular integral of the equation 

is yS = - h g  ~ 9 + 5 (  1 - p) P ; ~ ,  

&here the coefficient hti is given by 

the solution of ( 1 4 )  is 
m 

aZn RBn+l + bzn R2n+3 - hgi Rs+5) (1  - p2) PLn(p). 
n=l  S=l 

The only boundary condition from the set (10)-(13) still to be satisfied is ( l l ) ,  i.e. 
Y = a Y p R  = 0 on R = 1 ,  from which the unknown coefficients a2n and b,, can easily 
be obtained since the PL,(p) form an orthogonal set of functions with respect to the 
weighting factor (1 -p2)t. The complete solution to our linearized problem is then 

m m  

Y = C { (n  - 4s - 1)  R2n+1 - (n - 4s - 2 )  R2n+3 - Rs+5) h.$i ( 1  -p2) Pbn(p). ( 2 3 )  

We emphasize that the hl$ depend only on the form of the current distribution in the 
material. Table 1 lists the coefficients qi for particular current distributions of 
interest. 

n = l  s=l 
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a/b = 1, a = 0 a/b = &, a = 0 

8 

1 
2 
3 
4 
5 
6 

8 

1 
2 
3 
4 
5 
6 

n = l  n = 2  n = 3  n = 4  n = l  n = 2  n = 3  n = 4  
0 0 0 0 -7.41 -4.00 -0.48 -0.05 
6.20 0 0 0 2.84 0 0 0 
0 0 0 0 -0.72 - 1.44 -0.88 -0.12 
0-28 1.12 0 0 0.16 0.52 0 0 

0.03 0.07 0.2 1 0 0.02 0.04 0.10 0 
0 0 0 0 -0.04 -0.15 -0.27 -0.18 

alb = 8,  a = 0 alb = 8,  u = 0 . l n  
A r 

n = l  n = 2  n = 3  n = 4  n = l  n = 2  n = 3  n = 4  
-6.13 -3.31 -0.40 0.04 -6.65 -3.59 -0.43 0.04 

3.53 0 0 0 2.96 0 0 0 
-0.63 -1.31 -0.81 -0.11 -0.70 -1.54 -0.97 -0.13 

0.16 0.60 0 0 0.17 0.56 0 0 
-0.04 -0.14 -0.26 -0.18 -0.04 -0.14 -0.29 -0.19 

0.02 0.04 0.11 0 0.02 0.04 0.10 0 

A 
\ r \ 

TABLE 1. Coefficients 10s h,:: for various current distributions. 

4. Results 
4.1. Point source and sink on axis 

We now consider particular solutions (23) for a number of current distributions of the 
types described in 3 2. As stated earlier, the siting of the source has no direct physical 
significance. Furthermore, since we are interested here only in the broad qualitative 
features of the possible flows that may arise, in our numerical computations we choose 
values of a and b which are fairly representative of real welding conditions and lead 
to interesting results. We examine first the distribution due to a point source and 
point sink both situated on the axis of symmetry. 

When the source and sink are equidistant from the surface of the pool the infinite- 
series representation of their combined potential, given by (5) with a = 0 and a = b, 
contains odd powers of R only since d,, = 0. This leads to correspondingly simple 
forms for j x B and the stream function, as can be seen from the coefficients hf2 dis- 
played in table 1. The leading non-zero term (n = 1, s = 2) in (23) is 

Y = -3h$2)R3(1-R2)2p(1-~2) ,  (24) 

where hi2) = 6-20 x 10-5. Inspection of the magnitudes of the higher coefficients h&$ 
listed in table 1 suggests that convergence may be slow. However, (24) provides a 
fair approximation to the stream function over most of the pool, as may be found 
from either the numerical evaluation of (23) or a closer analysis of the higher terms, 
whose radial dependence is governed by both the general form of the solution and the 
boundary conditions a t  R = 0 and R = 1. 

Figure 1 (a) shows the streamlines for the case a = b. In  this example and all sub- 
sequent ones, the ratio r,/a is assumed to be 0.5. Sufficient terms have been included to 
restrict the numerical error in this example (and all subsequent examples) to around 
1 yo; the number of termsusedisindicatedoneachgraph. Greateraccuracy is considered 
unnecessary since we wish to show only the broad features of the flow for various 
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FIGURE 1. Cross-sections of flows due to  a point source and a sink. (a) a / b  = 1 ,  a = 0 ;  
( b )  a/6 = 4, a = 0 ;  ( c )  a / b  = 3, a = 0 ;  (d )  a / b  = 2, a = 0.ln. 

types of current distribution. The direction of the flow is indicated on the diagram and 
it is interesting to note that the flow is radially outwards on the surface, i.e. in the 
opposite sense to that for a point source of current on the surface (Sozou & Pickering 
1976). Also, the flow pattern close to the origin does not seem to indicate a singularity. 
This point is discussed further in 9 5.  

The effect of the position of the point sink on the motion was investigated for a 
number of values of alb. A transition takes place as this ratio is decreased from alb = 1 
to a/b = 0.5: from radially outward flow on the surface (figure 1 a )  to radially inward 
flow (figure 1 b ) .  In  the transition region the flow pattern breaks up into two separate 
regions, as shown in figure 1 (c). This figure demonstrates the interesting result that 
there can be radially inward flow on the surface but motion in the opposite sense in 
the bulk of the molten region. The fact that the direction of rotation reverts to that 
in the point-source problem (Sozou & Pickering 1976) as alb decreases is not surprising 
since the contribution due to the point sink diminishes as b increases, leaving the 
point source above the surface to dominate in the pool. 
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Kublanov & Erokhin (1974) have confirmed experimentally the general direction of 
flow predicted by Sozou & Pickering for a fairly concentrated source of current in a 
large (100 mm diameter) hemispherical bowl of gallium. Experiments under more 
typical welding conditions are in progress (Willgoss 1977, private communication) on 
the effect of varying the current distribution along the lines discussed in this paper. 

4.2. Point source and ring sink 

The other main type of current distribution examined earlier was that due to a point 
source and a ring sink centred on the axis of symmetry. Solutions (23) have been 
evaluated for a large number of values of a and afb, The results are qualitatively 
similar to those discussed in $ 4.1. 

As stated earlier, the ring sink degenerates to a point sink on the axis of symmetry 
as a -+ 0. For small values of a we should therefore expect the flow pattern for the 
ring sink to be closely related to that for the corresponding point sink. We illustrate 
this point for a = 0 . 1 ~  and alb = 0.75 in figure l(d),  which shows a double-loop 
system similar to that in figure 1 (c), although we observe that the upper loop has now 
become dominant. Indeed as a is increased further our results indicate that the lower 
loop disappears completely. 

With the ring sink situated on the upper surface of the material, i.e. a = Qn, the 
solution (23) was evaluated for a number of ratios alb and in all cases was found to 
produce only a single loop with radially inward flow on the surface. The flow patterns 
looked similar to those shown in figure 1 ( b )  and are not reproduced. 

5. Discussion 
As mentioned in the introduction, the point-source model examined by previous 

workers leads to an inherent singularity in the velocity field near the origin, and 
further singularities in the velocity near the origin in the nonlinear problem when 
K > Kcrit. However, for the current distributions considered here we have found a 
velocity field for the linearized problem which tends to zero a t  the origin, as can be 
seen from (9) and (23). That the origin should be a stagnation point in our case is not 
surprising since j x B and V x (j x B) both vanish there. Moreover, for our distributed 
model we should not expect inertial effects to play a significant role in this region. 
This is confirmed by using the linearized solution to evaluate the leading terms in (l) ,  
since one h d s  in all cases that the R dependence is of a lower order for the viscous and 
forcing terms than for the inertial term. Indeed, taking the limit as R -+ 0 of the non- 
linear equation (cf. Sozou & Pickering 1976), we can deduce that Y -+ 0 and that there 
are no singularities in the velocity field corresponding to those found for the point- 
source model. Therefore, by considering a distributed source of current we have 
eliminated the breakdown of the velocity field near the origin inherent in the point- 
source model. 

Nevertheless, in the body of the fluid the linearized solution is valid only for small 
Reynolds numbers and it is of interest to estimate the maximum currents which are 
thereby permissible. We have calculated the ratio of the inertial to the forcing terms 
in ( 1 )  a t  a large number of points in the pool for the various distributions discussed in 
$4. In  each case we find that the ratio is small compared with unity (say, 0.3) provided 
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that the current does not exceed some value between 5 and 15A. We assumed the 
values of the material constants quoted in the introduction and put a = 5 mm, which 
leads to a power distribution on the surface of the pool typical of that observed in 
practice. This clearly represents a significant advance on the limit to the current of 
around 1 A, found by Sozou & Pickering (1976), for the point-source model. However, 
normal welding currents are several hundred amps and a nonlinear distributed source 
model would be needed to cope with this regime. 

It is important to note that the directions of fluid flow could have been predicted 
from the sign of the right-hand side of (16). For our axisymmetric current distributions 
B$ is always one-signed and therefore the sign of the radial current flow, j,, in cylin- 
drical polars determines the sign of curl (j x B) in the weldpool and hence controls 
the direction of fluid flow. It is easy to see that, for the current distributions leading 
to figures 1 (a)-(d), j p  is always negative in the weldpool in figure 1 (a),  always positive 
in the pool for figure 1 ( b )  and changes sign within the pool in the remaining two cases. 
Shercliff (1970) has argued that a positive j, leads to inward flow of fluid on the top 
surface. Since a negativej, results in outward flow of fluid the flow patterns displayed 
in figure 1 are in full qualitative agreement with those suggested by the current 
distribution in the weldpool. 

It should be remembered that the numerical results in Q 4 have been evaluated for 
one particular value of the ratio ro/a, i.e. r,/a = 0-5. Clearly the flow patterns vary as 
ro/a is changed but further numerical results are not quoted here since no new quali- 
tative phenomena arise. The recent numerical results of Atthey (1977, private com- 
'munication), who solves the full nonlinear problem using a numerical method based 
on finite differences, confirm this view. 

The practical importance of fluid convection in the weld pool is that it affects the 
shape of the solid-liquid boundary. The low Reynolds number solution obtained here 
leads to PBclet numbers (i.e. characteristic ratio of heat convection to heat con- 
duction) which are of order 10-1 and so we do not expect convection significantly to 
alter the position of the boundary. Nevertheless, it  is worth noting that radially 
outward fluid flow on the surface should produce shallower pools whereas radially 
inward flow should deepen the pool. 

Finally, we emphasize that all our solutions are axisymmetric. In  practice, asym- 
metries are usually present through both the tapping of the current from one side of 
the pool and the traversing motion of the workpiece relative to the arc. These 
asymmetries might lead to yet further varieties of flow pattern and they will form 
the subject of future investigations. 

The authors are indebted to Mr A. J. Shrapnel for performing the numerical com- 
putations and to the referees for some helpful comments. 
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